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Existence of the Hannay angle for single-frequency systems 

Simon Golint 
Fachbereich Mathematik, Technische Universitat Berlin, Sekr MA 7-2, D-1000 Berlin 12, 
Federal Republic of Germany 

Received 22 April 1988 

Abstract. The Hannay angle was introduced by Hannay as a means of measuring an 
anholonomy effect in classical mechanics closely corresponding to Berry’s phase in quantum 
mechanics. Such classical adiabatic angle shifts, the Hannay angles, arise when an 
integrable classical Hamiltonian involves time-dependent parameters which undergo a 
closed adiabatic excursion. In this paper two proofs of an averaging type of theorem for 
a single-frequency dynamical system are given. As a consequence one can establish the 
existence of the Hannay angle for a class of smooth classical Hamiltonian systems with 
one degree of freedom. Moreover, a review of the rotated rotator illustrates the usefulness 
of our  averaging theorem. 

1. Introduction 

Classical mechanics is concerned with either solving or, whenever this goal cannot 
explicitly be achieved, exhibiting the qualitative features of the solutions of the 
equations of motion for the dynamical system under consideration. In particular, one 
is often looking for first integrals of motions, i.e. those functions of the motion which 
are preserved under time evolution. For instance, in the case of a conservative 
Hamiltonian system, i.e. when the Hamiltonian of the dynamical system is time 
independent, one such integral is provided by the energy itself. Moreover, if the 
system is integrable one can find a canonical transformation to angle-action variables 
[ l ]  and the actions are independent constants of motion. This is not so for time- 
dependent Hamiltonians. However, a simple intuitive argument (cf, e.g., [2]) based 
on two physical principles, angle averaging and Liouville’s theorem, leads to the 
assertion of the existence of adiabatic invariants. Here ‘adiabatic’ denotes slow time 
dependence. The adiabatic theorem of classical mechanics [3,4] claims, roughly 
speaking, that if H ( q ,  p ,  X ( t ) )  is an integrable classical Hamiltonian depending on 
some exterior parameters X ,  which are supposed to depend on time only in a slow 
fashion, then the actions are adiabatic invariants, i.e. are almost constant over a long 
timescale in the limit of slow time dependence of the Hamiltonian. A more precise 
statement of this fact will be given below. 

Hannay [2] and Berry [5] investigated the fate of the angle variables under an 
adiabatic excursion in the space of classically integrable Hamiltonians. It turns out 
that when the Hamiltonian is taken around a closed loop then this results in an extra 
angle, the Hannay angle, in addition to the time integral over the instantaneous 
frequency. This anholonomy effect is in correspondence to Berry’s phase in quantum 

t Supported by the Deutsche Forschungsgemeinschaft (DFG). 

0305-4470/88/244535 + 13$02.50 0 1988 IOP Publishing Ltd 4535 



4536 S Golin 

mechanics and, in fact, a semiclassical relation between these two quantities was 
proposed by Berry [ 51. 

It is the aim of this paper to analyse the existence of the Hannay angle. We do so 
by establishing an appropriate averaging theorem which will immediately imply the 
existence of the Hannay angle for smooth classical Hamiltonians. However, the analysis 
of the present paper is restricted to the case of one degree of freedom. Averaging 
results for systems with several frequencies are much more intricate due to the 
unavoidable occurrence of resonances. 

It seems natural to embark on the averaging theorem below by means of the 
averaging methods of classical perturbation theory [ l ,  31 and, in fact, we will give a 
proof of the theorem along these lines. Moreover, an alternative proof is given applying 
an integration by parts method. This procedure, which is non-standard in classical 
perturbation theory, was motivated by the search for generalisation to the case of more 
degrees of freedom. (In a future paper [6] we will deal with the multi-frequency case 
and also give a geometrical interpretation of the Hannay angle.) A direct illustration 
of the averaging theorem will then be given for the example of the rotated rotator. 

The plan of the paper is as follows. In 9 2 the averaging theorem needed for 
showing the existence of the Hannay angle is stated and proved by means of averaging 
methods of classical perturbation theory. Then some physics related to the Hannay 
angle is explained, and its existence is shown in 9 3. Section 4 is devoted to the 
alternative proof in terms of integration by parts. The example of the rotated rotator 
is discussed in 9 5 ,  and 13 6 contains the conclusion. 

2. The averaging theorem 

My purpose in this section is to formulate the general framework of the averaging 
method in classical perturbation theory for single-frequency systems, and to prove the 
kind of averaging theorem that will be needed for application to the Hannay angle. 

The setting of averaging comprises a hierarchy of dynamical systems whose time 
evolutions are to be compared in a suitable (the adiabatic) limit. The unperturbed 
system is given by the set of differential equations 

0 = w ( I )  ( l a )  

1 = 0  (1b) 

with t9 E II'= SI, I E K c R" and w : K + R. In what follows it will be essential that 
the angle 0 varies only on the one-dimensional torus II'; this is, by definition, the 
single-frequency case. The action I, however, will be allowed to assume values in (a 
subset of) R". As a matter of fact, this generality will be made use of in the next 
section (for n = 2). The perturbed system to be considered is governed by 

e = w ( I )  + &f ( 0, z ) 
I = &g( 0, I) 

( 2 a )  

(2b) 

where f and g are functions 2 ~ p e r i o d i c  in 0, i.e. defined on II' x K ,  and E 5 0 is a 
small parameter. More generally, we could have admitted an additional dependence 
o f f  and g on the parameter E without any resulting essential change in the proofs 
below. By Taylor expansion, one just gets higher-order perturbations. For simplicity 
of presentation we will omit such a dependence. 
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In the following 8 = O ( t ) ,  I = Z ( t )  will always denote a solution of the perturbed 
system, and it is the time evolution of these functions that we are interested in for 
small E and on a timescale of order 1 / ~ ,  i.e. O s  t s I / & .  Averaging theorems are 
concerned with comparing this evolution with the one coming from the averaged 
equation 

J = sg"'(J) 

where g"'(J) is the average of g(  8, J ) :  
(3) 

To avoid misunderstandings, it is worth pointing out that the solutions of ( 2 )  and 
(3) depend on the parameter E, i.e. 8, = O , ( t ) ,  I ,  = I , ( t )  and J,  = J , ( t ) .  In accordance 
with common usage in averaging theory we drop the subscript throughout the paper. 

Typically, averaging theorems state [ 11 under which conditions the averaged sol- 
ution J = J (  t )  approximates the solution I = I( t )  of the perturbed equation ( 2 ) .  Before 
giving some precise results of this approximation let us fix the assumptions. In the 
following 1 1  will denote the supremum norm of a function and 11 1 1 ,  will be the 
supremum of the moduli of the function and its first derivatives. 

( i )  Assumptions on phase space. The phase space is M := II' x K ,  where K is a convex 
and compact subset of R". 

(ii) Assumptions on the angularfrequency. We assume the angular frequency w E C ' (  K )  
to be nowhere vanishing in K. (Note that the compactness of K implies / Iw - ' / IO<co . )  

(iii) Assumptions on f and g. f and g are in C ' ( M ) .  

(iv) Assumptions on J(t). Fix the initial condition J ( 0 )  = Io€  K and assume that, for 
~ = l ,  J ( t )  does not go out to aK (the boundary of K )  for O s t s l .  (For arbitrary 
E > 0 this immediately implies that J ( t )  does not cross aK for O s  t s l / ~ ,  since 
J e ( t )  =Jl (&t ) . )  

It is worth pointing out that the essential assumption is w # 0, which corresponds to 
a non-resonance condition. 

The usual averaging theorem on the evolution of the actions I ( t )  on a timescale 
of order I / &  can then be proven (cf, e.g., [3]). 

Theorem 1. For any initial angle e(0) = eo€ IT', initial actions I ( 0 )  = Io ( = J ( O ) )  and 
under assumptions (i)-(iv) the perturbed system ( 2 )  has a unique solution up to time 
1/ E satisfying 

This is the standard averaging theorem. We will now establish another averaging 
theorem, and in this section its proof will rely on the idea of angle averaging. It should 
be stressed that the next theorem will essentially deal with the behaviour of the angle 
variable (this will become clear from the discussion in 0 3) whereas theorem 1 considers 
the variation of the actions. However, the adiabatic invariance of the actions will be 
a necessary ingredient in theorem 2. 
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Let a E C’ ( I I ’x  K )  and suppose that ~ ~ a ~ ~ l s  c1 for some c1 > O .  As before, an 
additional E dependence is possible but omitted for simplicity. Define 

A ( t ) : =  E dua(6 ,  I )  (6a) 

(66) 

lo‘ 
Aav( t )  := E lof du a”’(J) 

where, again, aav(J) := a(  6, J )  d6/27r. We have chosen an explicit factor of E in 
these definitions so as to keep the difference of A and A”’ of the order of E for times 
of order 1 / ~ .  

Theorem 2. Under the same assumption as before 

( ~ E > O ) ( V E ~ E O )  SUP I A ( t ) - A “ ” ( t ) l s  EE 
O s r s l / E  

Here is taken from theorem 1. 

(7) 

ProoJ Let A( t )  be given by A := A + E A  (6, I), where the function A (2~-periodic  in 6) 
is to be suitably defined in such a way that A( t )  will be close to both A( t )  and A”’( t ) .  
Rather than working with A itself, consider its time derivative 

n 

A = A+ ~ ( 6 d ~ A  + I V J )  with i V , A : =  I ld r ,A  
1=1  

= ~ ( a + w d ~ A ) + R ,  (8) 

where R I  := E ’ (  f d O A  + g V , A )  (again abbreviating gVIA := X.1=, g,dr,A). Since we are in 
the single-frequency case and, by fiat, w # 0, the homological equation a + o d O A  = aav 
admits a solution for A, namely 

and obviously A is 2~-per iodic  in B. Now we obtain 

A = &aav(Z) + R1 = Ea”’(J) + R2 (10) 

and R2:=  R I  + E [ U ” ( I )  - a a v ( J ) ] .  
Since lRll S ~ ~ ( ~ ~ f ~ ~ ~ +  Ilgllo)llA I l l ,  this entails 

IR2I 6 E 2 C 2  E s E o  (11) 

[ ( A - A ~ ” ) ’ ~  s c2c2 (12a) 

[A( t )  - Aav( t ) l  s &c2 (12b) 

where c2:= (Ilfllo+~lg/lo)llA1ll+cc,. Here and c are taken from theorem 1. Thus 

and O s  t s  1/e. 

By the very definition of A, it is close to A and hence 

[A(  t )  -Aav( t)ls IA( t )  - A (  t ) /  + IA( t )  -Aav(  t)l EC“ 

where E:= IIAIlo+c2. 
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3. The Hannay angle 

Originally Hannay [ 2 ]  was led to the investigation of classical adiabatic angle shifts 
by the discovery [7] of a quantum mechanical quantity, Berry’s phase, for which he 
wanted to give a classical analogue. In this section we will briefly review the setting 
of the Hannay angle. Then we will show how theorem 2 can be applied to prove the 
existence of the Hannay angle for single-frequency systems and to establish a particular 
simple ‘averaged’ form of it. Throughout the following we will assume that the systems 
under consideration have only one degree of freedom. 

Let an integrable classical Hamiltonian H ( q ,  p ,  X )  be given. Here q and p denote 
the position variable and the momentum variable respectively, and X is some exterior 
parameter. Since, by fiat, the Hamiltonian is integrable for fixed values of X there 
exists, for all X ,  a canonical transformation to angle-action variables 8 and I so that 
the Hamiltonian becomes cyclic when expressed in the new variables, i.e. it does not 
depend on the angle 8. We call ho(I,  X )  the Hamiltonian in the new variables. 

Now suppose that the Hamiltonian describes a time-dependent dynamical system 
and the time dependence enters by changing the parameters X as time evolves. Being 
interested in the adiabatic limit, i.e. the limit of slow time dependence, we consider 
X = X (  ~ t ) ,  where E 3 0 is assumed to be small. The evolution of the angle-action 
variables in the non-conservative case is not governed by ho(I, X )  alone, but one has 
to take into account the time derivative of the generating function S(q, I, X )  which 
describes the change of variables from (q ,  p )  to ( 8 ,  I ) .  More precisely, the generating 
function is generally multi-valued and one has to consider all the branches; we will 
neglect this for simplicity of presentation. Expressing the generating function com- 
pletely in the new variables by 

Y ( 4  I, X )  := S ( q ( 4  I, X I ,  I, X )  

h = I I ~ ( I ,  X I +  Ex’h,(e ,  I,  x )  

h l ( 4  I, X I : =  ( v x . s p - P v x q ) ( e ,  I, X ) .  

e = w ( ~ , x ) + ~ x ’ a , h , ( e ,  I , X )  (15a)  

i = - ~ x ’ a ~ h , (  e, I ,  x ) .  (15b)  

(14)  

the dynamics in angle-action variables is given by the Hamiltonian 

where 

Thus the canonical equations are 

Here w (  I, X )  := d,ho( I ,  X )  is the instantaneous angular frequency. 
Until recently, mainly the behaviour of the action variables I (  t )  was considered. 

The adiabatic thorem of classical mechanics states that for sufficiently slow time 
dependence, i.e. E small, the variation of the action is small on a timescale of order 
1 / ~ .  In other words, the action is an adiabatic invariant. 

Hannay [2] and Berry [ 5 ] ,  however, considered the time evolution of the angle 
variable 8. The Hannay angle A 8  is defined by comparing the evolution when the 
exterior parameters in the Hamiltonian undergo a closed adiabatic loop with the 
evolution due to the instantaneous frequency. Since the definition of angle variables 
involves a ce$ain degzee of arbitrariness related to the choice of origin ( S (  q, I, X )  + 
S (  q, I ,  X )  + 81, with 8 = constant) one cannot, generally speaking, compare angles 
belonging to distinct values of X ,  and it is for this reason that the excursion of the 
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parameter X is required to be closed. Let us assume that X(0)  = X( 1) .  Then the 
Hannay angle is defined by 

B ( l / E )  - Bo- [o"' dt  w ( I ( t ) ,  X(Et))) 

provided this limit exists. 
We shall now show that theorem 2 may be applied to prove that the Hannay angle 

is well defined in the single-frequency case, i.e. when the underlying Hamiltonian 
describes a system of one degree of freedom. Since theorems 1 and 2 apply to 
autonomous systems we must get rid of the explicit time dependence in (15).  This can 
be achieved by introducing a new 'action' T (  t )  := E t .  Then (15 )  is equivalent to the 
autonomous system 

b = W (I, x( 7)) + EX'( T ) d [ h ,  ( 8, 1, x( 7 ) )  (17a) 

i =  --EX'(T)d@h1(8, I,X(7)) (17b) 

i=  E. (17c) 

j = o  (18a) 

i =  E.  (18b) 

Here the corresponding averaged equations are particularly simple: 

Since (17)  now has the required structure (the number of actions being two) theorem 
2 implies the existence of the Hannay angle, provided the assumptions of 0 2 are 
satisfied. 

Theorem 3. A B  is well defined by (16) and moreover 

= -al $% dX(pVxq)av(Io, x). 
Here % denotes the contour of X = X ( E ~ )  in parameter space. 

ProoJ: By the equation of motion (17a) and theorem 2: 

e( t )  - Bo - dt  w (  I ,  X( T ) )  = E dt  X'( r)dlh,( 0, I, X( T ) )  

= ~1~'" dtX'(T)(d~hl)av(Io,  X(T) )+O(E)  

ld" I:/' 
= d I  lo1 dt  X (  t)(VxY-pVxq)av(Io, X( t ) )  + O ( E )  

= -3, f% dX(pV,q)"'(~o, X)+O(E).  (20) 

The term with the generating function Y has vanished since it is a gradient and 
integration is performed around the closed contour %. 
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As one can see from (20), the Hannay angle depends only on the initial action Io and 
the contour Ce, A 8  = A8(Io, Ce), but is independent of eo. The independence of the 
angle shift on eo is, of course, desirable in view of the arbitrariness in the choice of 
the origin of the angle variable. Moreover, (20) makes it obvious that a non-vanishing 
Hannay angle can only arise if the loop is performed in a parameter space which is 
either at least two dimensional or homeomorphic to the circle S ’ .  A closed loop in 
R’ has to retrace itself and thus yields a zero contour integral. 

For completeness let us note that by Stokes’ theorem the Hannay angle can be 
given a different representation, namely as an integral over a 2-form [2,5]. Let 9 be 
a surface in parameter space with boundary % and denote by b the exterior differential 
in parameter space; then 

Note that W is a 2-form in parameter space, called the angle 2-form. 
As for the situation with more than one frequency, the reader is referred to [ 6 ] .  

Moreover, one knows that Berry’s phase is formulated irrespective of whether the 
underlying classical system is integrable, ergodic or in between. Since, semiclasically, 
Berry’s phase is related to the Hannay angle one wonders what the correspondence 
might be in classically non-integrable situations. A geometric interpretation of the 
Hannay angles (in accordance with Simon’s treatment [8] of Berry’s phase) answering 
this question will follow in [6]. 

Another case where a Hannay angle can easily be computed is a (not necessarily 
completely integrable) classical Hamiltonian system whose Hamiltonian admits one 
and the same symmetry for all values of the parameters X .  Roughly speaking, the 
symmetry allows, by Noether’s theorem, for a constant of the motion for each fixed 
X ,  and then one can perform a canonical transformation on phase space to make the 
Hamiltonian cyclic. The shift for the corresponding variable, the one which is absent 
in the Hamiltonian, can be computed and turns out to be zero. This is proved in [9]. 

4. Integration by parts argument 

The proof of theorem 2 relied on standard methods in the theory of averaging. I will 
now give a second proof based on a rather unconventional approach to classical 
perturbation theory, namely via integration by parts. The main motivation for looking 
for a different proof of theorem 2 was the desire for generalisation to systems with 
several frequencies. To indicate the idea of how the following proof could be adapted 
to the multi-frequency case consider ‘well behaved’ initial values ( B o ,  Io ) ,  i.e. those for 
which I (  t )  enters the resonant zones at most for short times. Then (29) might be used 
by splitting integration over ‘resonant’ and ‘non-resonant’ time intervals and giving an 
upper bound to the resonant one according to the assumption on the character of the 
initial value. 

The general intention here is to construct a proof of the existence of the Hannay 
angle by making use as much as possible of already existing results in averaging. So 
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the following proof will also make use of the usual averaging theorem, i.e. theorem 1. 
We shall now take for granted that the previous assumptions of Q 2 are satisfied. 

Alternative proof of theorem 2. Consider 

A(  t )  - Aav( t )  = E d u r a (  8, I )  - aav(J ) ]  ld 
= &lo7 du[a(e ,  J ) - a a v ( J ) ] + &  du [a (e ,  z ) - a ( e , J ) ] .  

(22) 
lo1 

According to the assumptions on the function a the modulus of the last integral may 
be bounded by ~ ( l a l l ,  for OG t 1 / ~ ;  this follows from the mean value theorem. Thus 

A ( ? )  -Aav( t )  = E d u [ a (  8, J )  - u" ' ( J ) ]+O(E)  lo7 
where here and  in the following O ( E )  is always meant uniformly for 0 s  t G 1 / ~ .  

of a 
Being left with controlling the first term in (23) we introduce the Fourier expansion 

a 

a(e, I)= &(I) e iks  
k = - ; c  

where the Fourier coefficients are given by 

27T 

Since, by fiat, a ( . ,  I) is a continuously differentiable function, the Fourier series (24a) 
converges for each I uniformly in 6 ~n'. In fact, the compactness of K implies that 
the convergence in (24a) is uniform on IT' x K.  This can be seen by adapting the usual 
proof of uniform convergence in 8 (cf, e.g., [ lo])  to the additional I dependence. 
Upon averaging with respect to 8 we may therefore exchange the order of integration 
and  summation so that aav = Bo and 

A( t ) -A" ' ( t )=s  d u  i & ( J )  e iks+O(E)  j o '  k = O  

The last step is, again, a consequence of the uniform convergence. 

of motion ( 2 a )  
Now let us consider each of the non-zero modes ( k  # 0) separately. By the equation 

Since w # 0 was assumed we may use the equality 
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so as to carry out a partial integration: 

lo' du &(J) eike 

= Iof du â,o 8, [ex p( i k 1: d U w (I))] ex p( i ek Iou d v f ( 0, I)) 
w ( 0  

-- - a ^ k ( J )  eiko 1 ' - E I: du [ & ( J )  f ( 0, I )  
i kw( I )  w ( I )  

Again, the equations of motion (2a, 6 )  were used here. Note that Z k f o k - '  a,a^,(J) eiko 
is uniformly convergent on II' x K since it is the Fourier series of i(b( 0, J) - bav(J)) ,  
where b( 0, J) := 5 d 6  d J [ a ( 6 ,  J )  - a"'(J)], and so the remark following (24b) applies. 
This now entails 

1' du c ? ~ ( J )  eiko 
k # O  o 

and thus this quantity is uniformly bounded for Os t s 1 / ~ .  Therefore, (25) yields 
A ( t )  -Aav( t )  = O( E ) .  

5. Example: rotated rotator 

This example is devoted to an illustration of the general theory explained so far., In 
a different version it was already treated in [2,5]. 

By the rotated rotator we mean the free motion of a particle of unit mass on a 
planar loop (in coordinate space) which is itself rotating through a complete turn. The 
rotation of the loop is assumed to take place around an origin in its own plane and 
to leave the loop in this plane. 

As a result of the time-dependent holonomic constraint this system has only one 
degree of freedom and thus lies within the scope of the method of this paper. Let us 
choose a frame of reference fixed with respect to the loop and denote the position of 
the particle in this frame by x = x(s), where s is the arc length as measured from some 
fixed (material) point on the loop. Moreover let @ be the angle by which this frame 
of reference differs from the inertial one (cf figure 1). If q is the position vector in 
the inertial frame of reference then 

The Lagrangian L = i(q)' is easily expressed in the coordinates of the rotating frame: 

L=&(S)'+ ~ f l S A ( s ) + $ ~ ~ f l * x ~ ( s )  (31) 
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Figure 1. 

where EO(Et) = (d/dt)O(et)  is the angular frequency of the rotation of the loop and 
A ( # )  := det(x(s), x’(s)). From this one may deduce the Hamiltonian 

h = & p  - E ~ A ( ~ ) ) ’ - ~ E ’ ~ ’ L ’ X ’ ( ~ )  (32) 
where the canonical momentum p conjugate to s is just the ordinary momentum for 
the inertial observer, p = S + E.RA(s). 

It is worth emphasising that this Hamiltonian differs from the standard type 
h = A o +  ~ h ,  (with ho and h ,  both E independent) as it contains an E’ term. This 
difference comes about because we are actually reducing a two-dimensional system 
by a holonomic constraint. Strictly speaking, two-dimensional systems are not within 
the scope for our averaging theorem. Only if the higher-dimensional analogue is 
understood might one expect to compute the angle shift for the rigid constraint by 
first solving the system with a soft constraint (i.e. a potential well around the loop) 
and then taking the limit which implements the rigid constraint. 

The Hamiltonian equations of (32) are 

S = p  - ERA(s) (33a) 

ti = & n ( p  - & n ~ ( s ) ) ~ ’ ( s ) + ~ ’ n * x ( s )  ~ ’ ( 8 ) .  (33b)  
As pointed out before, theorem 2 remains valid if E’ perturbations are admitted, so that 

47rd dt  nA(s) = -- 
E‘O 2 (34) 

where 2 and SP are the length and the enclosed area of the loop respectively. In terms 
of the polar angle 13 := 27rs/2 (with respect to the rotating frame of reference), the 
Hannay angle is [2,5] 

A0= -8.ird/z2= - 2 ~ + 2 ~ ( 1  - 4 ~ d / 2 ’ ) .  (35)  
The first term expresses the fact that the loop has carried out one complete turn 

(so that there is a shift in the origin by -27r) whereas the anholonomy effect is contained 
in the second term, which is non-negative by the isoperimetric inequality. Note that 
the second term is independent of the particular shape of the loop but only contains 
dl2’. For non-angular loops the Hannay angle therefore allows one to detect rotations 
(as was noted by Berry [5]). 
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Another computation allows one to compare the actual evolution of the rotated 
rotator to the unperturbed one (where the loop is kept fixed)?. By ( 3 3 a )  

d t p - 4 ~ & / 3 + 0 ( ~ ) .  ( 3 6 )  

It follows by partial integration that 

= po + jol" d I( 5 - t ) [ ER( p - ERA)A' + E ' R ~ X .  x'] 

= l p O + ~  E ~o l 'Ed t ( f - t )RpA~+O(E)  

E 

( 3 7 )  

since 

and by averaging 

E [ol" du R 2 ( x 2 - R 2 ) ' = O ( ~ ) .  

Moreover 

E jol"dr(f-t)flpA'= E ~ o l " d i ( t - i ) R ( S + ~ R ) A '  

= E jol'F d t (! - t ) RSA' + O( E ) 

by the same argument as in ( 3 8 )  and ( 3 9 ) .  Thus 

E Io1l' dt (  1 / ~  - t)RpA' 

d 
dt  

= E [ol" dt(  1/ E - t )R - A + O( E )  

d 
d t  

lo1'' d t RA - E jO1" d t ( 1 / E - t ) - R ( ~t ) A + O( E ) = -R(O)A(sO) + E 

=-R(O)A(S~)+--EF 4*d 2 ~ ~ 0 1 ~ ' d t ( l / E - t ) - R ( E t ) + O ( E )  d 
3 dt  

= -R (0) A( SO) + R( 0 )2d /  3 + 0 ( E ) . 
Altogether 

( 3 9 )  

t I am grateful to R Seiler for pointing out this application of theorem 2. 
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and this corrects formula (A2.15) given in [ 5 ] .  It is interesting to note that averaging 
over the initial positions so yields 

i.e. the terms on the right-hand side of (42) reduce to the one from free evolution and 
the Hannay angle. 

6. Conclusion 

The Hannay angle was found explicitly only recently, although presumably it might 
have occurred in some physical applications before. Anyway, it has already found 
application in optics [ l l ]  and celestial mechanics [9]. But also from a theoretical 
standpoint the Hannay angle is an interesting quantity, particularly in the context of 
semiclassical approximations, where Berry’s phase and Hannay’s angle might help to 
shed some light on the semiclassical features of classical properties such as integrability 
or chaos. So it seemed worthwhile to start an investigation on the mathematical 
foundation of the Hannay angle. 

This paper dealt exclusively with the investigation of the Hannay angle for systems 
with one frequency. The case of several frequencies requires a more careful treatment 
as resonances become unavoidable. From a physical point of view this situation is, 
of course, also very interesting. This work will appear in [6] together with a geometrical 
interpretation of the Hannay angle. 

According to the results by Lenard [12] and Neishtadt [13] (see also the references 
contained in [lo]) the actions are adiabatic invariants to all orders, i.e. I (  t )  - Io = O( E ” )  

for all n E N. In contrast to the assumptions made in this paper these results needed 
that the change of the exterior parameters X tends to zero for infinite times (i.e. as 
t++cD)  whereas we have been considering periodic time dependence. As for the 
Hannay angle, one cannot expect that the limit in the definition (16) of the Hannay 
angle involves only terms of infinite order. A simple counterexample is given by 6 = 1, 
a (  8, I )  = cos 8 so that A( t )  - A’’( t )  = E sin t and, therefore, A( 1/ E )  - Aav( 1/ E )  = 
E sin (1/ E )  # O( E ’ ) .  Of course, perturbation theory could be applied to obtain the 
expansion of A( 1/ E )  - Aav( 1/ E )  in successive powers of E, but being interested in the 
limit E + 0 we did not consider higher-order expansions. 
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